Nanotechnology Enabled Image Guided Therapeutics in Lung Cancer

Kazuhiro Yasufuku MD, PhD
Director, Interventional Thoracic Surgery Program
Associate Professor of Surgery, University of Toronto
Division of Thoracic Surgery, Toronto General Hospital

Personalizing Cancer Medicine in 2015

Feb 2nd, 2015
Disclosure

• Industry-sponsored grants
 • Educational and research grants from Olympus Medical Systems Corp.

• Consultant
 • Olympus America Inc.
 • Intuitive Surgical Inc.
 • Covidien
 • Johnson and Johnson

• Research Collaboration
 • Olympus Medical Systems Corp.
 • Novadaq Corp.
 • Veran Medical Technologies
Lung Cancer

• Lung cancer remains the leading cause of cancer death in the Western world

• Early detection is key to improved survival

• The detection rate of early-stage lung cancer is anticipated to increase with the introduction of CT screening
Lung Cancer – New Problems

• How can we efficiently localize small lung cancer during MIS?

• What are other minimally invasive therapeutic options for high risk pts with lung cancer?

2009 2011 2012
Diagnostic Approach to Pulmonary Nodules

• Minimally Invasive Biopsy
 • Bronchoscopic biopsy
 • CT guided FNA

• Surgical biopsy
 • VATS
 • Thoracotomy
Bronchoscopic Biopsy

- Transbronchial biopsy

- EBUS-GS

- Electromagnetic Guidance

- Virtual Navigation
VATS (Video-assisted thoracoscopic surgery)

• Procedure of choice for surgical biopsy of peripheral pulmonary nodule

• Limitation
 • Identification of the nodule
 • Lack of digital palpation in small, non-solid deep nodules
 • May require conversion to thoracotomy
Localizing Techniques - VATS

• Intraoperative imaging
 • CT
 • Thoracic ultrasound

• Preoperative CT guided marking
 • Liquid material (contrast media, colored adhesive agents, dyes)
 • Radionuclides
 • Wires (hookwires, microcoils)

• Preoperative bronchoscopic marking
 • Dye
 • Fiducials

Radiology 2002; 225: 511-518
Wire Localization - Microcoil Localization

73/75 (97%) 4-24-mm nodules successfully removed low rate of intervention (3%) for procedural complications

Radiology 2009; 250: 576-585
Microcoil Localization

1. CT guided micro coil placement
2. VATS microcoil detection
3. Fluoroscopy guided VATS wedge resection
4. Confirmation of microcoil
Microcoil Localization – Toronto Experience

• First case October 2008
• 64 cases
• Complete resection with VATS in 62/64 cases (97%)
• 100% diagnostic yield
GTx (Guided Therapeutics) Program
GTx Surgery Overview

TRIGOR = Translation Research Image Guided OR
TRIGOR A Capabilities

Cone-Beam CT

Dual Source- Dual Energy CT

MIS, Endoscopic Technology
TRIGOR A - GTx OR
Multi-Modality Surgical Guidance

Pre-Operative Imaging

Intraoperative CBCT

Surgical Tool Tracking

Surgical Planning

Optical Imaging

Intraoperative localization

Image assistance during MIS/Robotic Surgery

Real time monitoring of minimally invasive thoracic intervention
Optical Surgical Navigation

1. Preoperative CT imaging
2. Cone-beam CT nodule localization
3. Image registration with surgical navigation

Pre-Operative Imaging
Intraoperative CBCT
Surgical Tool Tracking
GTx OR – Image guided Transbronchial Interventions
GTx OR – VATS localization
ICG and Near Infrared (NIR) Imaging

Indocyanine green

![Indocyanine green molecule](image)

M.W: 775

![Molar extinction coefficient graph](image)

Surv Ophthalmol, 2000

NIR thoracoscope

SPY scope, Novadaq Technologies™
ICG - SPY Localization
Image-guided Localization Platform for Minimally Invasive Lung Cancer Surgery
Multi-modal liposomal nanoparticle (C800) - ICG Liposome

The phospholipid nanoparticle, coated with polyethylene glycol, encapsulates ICG and CT contrast (iohexol, labelled IOX).

The prolonged intravascular half-life allows for longitudinal CT and NIR imaging.
Administered CF800 continuously remains in both vasculature and the tumor in a rabbit, allowing for successful 3D reconstruction even at 3 days post injection.
NIR imaging of Lung Cancer

4 days post-injection of CF800
Ultra-minimally Invasive multi-modal image guided phothermal ablation of lung cancer
Porphysomes: Liposomes like bilayer porphyrin-phospholipid

Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents

Jonathan F. Lovell1,2, Cheng S. Jin1,2, Elizabeth Huynh2,3, Honglin Jin2,3, Chulhong Kim4, John L. Rubinstein3,5, Warren C. W. Chan1, Weiguo Cao6, Lihong V. Wang4 and Gang Zheng1,2,3, *

Works as both fluorophore and photo-enhancer
EPR effect; Enhanced Permeability and Retention Effect

Cancer vasculature

Normal vasculature

Porphyrome distribution in Orthotopic lung cancer Xenograft models

A549

H460

H520

White-light Image

Maestro Fluorescence Image
Porphysome thermal effect on resected VX2 tumor tissue (ex-vivo)
Development of prototype bronchoscope for visualization of porphysome fluorescence

Emission (bronchoscope side):
- A long pass filter: 678-1000nm

Exitation (light source side):
- Red diode of 10 mW output
- A band-pass filter: 650-670nm
In-vivo model

Prototype fluorescence bronchoscope

WL 0 time 24hr 48hr
Experimental Design

Day 0

Bronchoscopic VX2 inoculation

Day 3

CT

Day 8

- Confirming Tumor growth by bronchoscope & Radial EBUS
- Systemic administration of porphysomes Fluorescent bronchoscope

Day 10

- Fluorescent bronchoscope & PTT

Tumor-growth

Bronchoscope Radial-EBUS Bronchoscope Radial-EBUS
Porphysome enhanced transbronchial PTT

Laser Control

R160

Lung Slide

H&E staining

NADH staining

*Ablated area: < 2 mm diameter

Porphysome-PTT

R167

H&E Staining

NADH Staining

Ablated area: 6 mm x 5 mm

Ablated volume
Ultra-minimally invasive multi-modal image guided phothermal ablation of lung cancer
Summary

• Advances in nanotechnology and image guidance will enable intraoperative localization of small peripheral nodule and also assist surgeons during MIS

• New transbronchial ablation technologies are in development and can potentially be used for minimally invasive treatment of early stage lung cancer
Acknowledgement

Toronto General Hospital
Doctors of Thoracic Surgery (DOTS)
- Shaf Keshavjee
- Tom Waddell
- Gail Darling
- Andrew Pierre
- Marc de Perrot
- Marcelo Cypel

Latner Thoracic Surgery Laboratory
Yasufuku Laboratory
- Hironobu Wada
- Tatsuya Kato
- Priya Patel
- Spencer Hu
- Daiyoon Lee
- Judy McConnell
- Alexandria Grindlay
- Muhammed Hassan
Acknowledgement

Department of Medical Biophysics
- Gang Zheng
- Brian Wilson
- Warren Chan
- Jonathan Lovell

Faculty of Medicine
- David Hwang
- Ren-Ke Li

TECHNA Institute
- David Jaffray
- Robert Weersink
- Jonathan Irish
- Harley Chan
- Michael Dunne
- Jimmy Qiu

Chiba University
- Department of Thoracic Surgery
 - Prof Yoshino

Kochi University
- Department of Surgery
 - Prof Orihashi

Hokkaido University
- Department of Cardiovascular and Thoracic Surgery
 - Prof Matsui
 - Prof Kaga
Thank you

Division of Thoracic Surgery
Toronto General Hospital
University Health Network

Kazuhiro Yasufuku, MD, PhD, FCCP
kazuhiro.yasufuku@uhn.ca