A Cautionary Tale about Genomic Biomarkers in Cancer

Benjamin Haibe-Kains

Principal Investigator, Bioinformatics and Computational Genomics Laboratory **Assistant Professor**, Medical Biophysics, University of Toronto

(Random) Prognostic Biomarkers

Prognostic gene signatures (aka genesets)

- Thanks to high-throughput technologies, the number of publications reporting biomarkers in cancer literally exploded
- >3500 gene expression *signatures* have been published so far (MSigDB, GeneSigDB)
- Roughly 300 signatures per year, almost one new signature published every day ...

Prognostic value of genesets

- Common practice to claim **biological relevance** for a signature/geneset yielding significant prognostic value
- Venet et al. showed that most random genesets can be used to significantly discriminate between low and high-risk breast cancer patients

 OPEN @ ACCESS Freely available online
 PLOS computational Biology

 Most Random Gene Expression Signatures Are Significantly Associated with Breast Cancer Outcome

 David Venet¹, Jacques E. Dumont², Vincent Detours^{2,3*}

 Citation: Venet D, Dumont JE, Detours V (2011) Most Random Gene Expression Signatures Are Significantly Associated with Breast Cancer Outcome. PLoS Comput Biol 7(10): e1002240. doi:10.1371/journal.pcbi.1002240

Generalization of Venet's results

- We first checked whether these results still hold when analyzing (much) more datasets
- We used a compendium of 36 breast cancer microarray datasets (~4000 patients with survival information)

These collection of curated datasets will be available soon in **InSilicoDB**

Prognostic

Are random genesets prognostic?

• We generated 1000 random genesets for each size and tested their prognostic value

• If the assumptions of the log-rank test are met, p-values for random genesets should be approx. uniformly distributed

Many random genesets are prognostic

Global population of breast cancer patients

All breast tumors

Uniform P quantiles

WARNING Breast cancers are heterogeneous

- Breast cancers are clinically diverse
 - Tumors with identical clinical parameters may lead to different outcomes
- And **molecularly** heterogeneous
 - Identification of subtypes based on gene expressions
- Perou et al. identified 4-6 subtypes exhibiting different clinical outcome

Stratification by molecular subtypes

- Are the results confounded by the presence of molecular subtypes?
- Subtyping using the robust SCMGENE classification model

JNCI JOURNAL OF THE NATIONAL CANCER INSTITUTE

A Three-Gene Model to Robustly Identify Breast Cancer Molecular Subtypes

Benjamin Haibe-Kains, Christine Desmedt, Sherene Loi, Aedin C. Culhane, Gianluca Bontempi, John Quackenbush, Christos Sotiriou

Vol. 104, Issue 4 | February 22, 2012

- Four main subtypes:
 - ER+/HER2- Low Proliferation (Luminal A)
 - ER+/HER2- High Proliferation (Luminal B)
 - HER2+ (HER2-enriched)
 - ER-/HER2- (Basal-like)

Prognostic value depends on the subtypes

Breast cancer molecular subtypes

Benjamin Haibe-Kains

Uniform P quantiles

2014-02-11

Analysis of ovarian cancer

- Collection of 11 datasets including ~1700 high-grade serous ovarian tumors
- Subtyping using the **AngioS** classification model

OPEN O ACCESS Freely available online

PLos one

Angiogenic mRNA and microRNA Gene Expression Signature Predicts a Novel Subtype of Serous Ovarian Cancer

Stefan Bentink^{1,6.}, Benjamin Haibe-Kains^{1,6.}, Thomas Risch¹, Jian-Bing Fan³, Michelle S. Hirsch^{4,7}, Kristina Holton¹, Renee Rubio¹, Craig April³, Jing Chen³, Eliza Wickham-Garcia³, Joyce Liu^{2,7}, Aedin Culhane^{1,6}, Ronny Drapkin^{4,5,7}, John Quackenbush^{1,2,6*"}, Ursula A. Matulonis^{5,7"}

Citation: Bentink S, Haibe-Kains B, Risch T, Fan J-B, Hirsch MS, et al. (2012) Angiogenic mRNA and microRNA Gene Expression Signature Predicts a Novel Subtype of Serous Ovarian Cancer. PLoS ONE 7(2): e30269. doi:10.1371/journal.pone.0030269

- Two main subtypes:
 - Angiogenic
 - NonAngiogenic

Prognostic value depends on the disease

Global population of ovarian cancer patients and molecular subtypes

Significance analysis of prognostic signatures (SAPS)

Benjamin Haibe-Kains

UHN 2014

Genesets identified by SAPS

- We identified 1300 genesets (out of 5320, MSigDB) which yielded significant SAPS scores in at least one cancer subtype
- We clustered genesets and disease subtypes using hierarchical clustering

Prognostic genesets in ovarian and breast cancers

• 2 main clusters of subtypes, not based on cancer type

Prognostic genesets in ovarian and breast cancers

- Proliferation-related genesets are highly prognostic in luminal breast cancers
- Immune-related genesets are associated with good prognosis in all subtypes but Lumina A breast cancers

(Random) Predictive Biomarkers

Pharmacogenomic data

Cell lines $\begin{bmatrix} Sigma \\ Finite{} Finite{} \\ Finite{} \\ Finite{} Fi$

Resistant vs. sensitive cell lines

Large pharmacogenomic datasets

- Large-scale studies have been published recently in *Nature*
 - The Cancer Genome Project (CGP) initiated by the Sanger Institute
 - **131** drugs (IC₅₀)
 - 727 cancer cell lines

- The Cancer Cell Line Encyclopedia (CCLE) initiated by Novartis/Broad Institute
 - **24** drugs (IC₅₀)
 - 1036 cancer cell lines

$CGP \cap CCLE$

Drugs: 15 drugs have been investigated both in CGP and CCLE

Paclitaxel	Microtubules depolymerization inhibitor
PD-0325901, AZD6244	Mitogen-activated protein kinase kinase (MEK) inhibitor
AZD0530 (Saracatinib)	Proto-oncogene tyrosine-protein Src inhibitor
Nutlin-3	Ubiquitin-protein ligase MDM2 inhibitor
Nilotinib	BCR-ABL fusion protein inhibitor
17-AAG (Tanespamycin)	Heat shock protein (Hsp90) inhibitor
PD-0332991	CDK4/6-Cyclin D inhibitor
PLX4720, Sorafenib	RAF kinase inhibitors
Crizotinib, TAE684	ALK kinase inhibitors
Erlotinib, Lapatinib	EGFR/HER2 kinase inhibitors
PHA-665752	Proto-oncogene c-MET kinase inhibitor

Significant Analysis of **Predictive** Signatures

- Joint analysis of CGP and CCLE in a meta-analysis framework
- Genesets are summarized by their first principal component
- Significance is computed using a linear regression model controlled for tissue type
- We generated 1000 random genesets for each size and tested the significance of their predictive value

Are random genesets predictive of drug sensitivity?

Take home messages

Prognostic biomarkers

• Cancers are molecularly heterogeneous

→ subtypes should be taken into account

- Many, many genes might be prognostic
 - Prognostic value of genesets should be tested against random sets of genes

OPEN ORCESS Freely available online

· PLOS | COMPUTATIONAL BIOLOGY

Significance Analysis of Prognostic Signatures

Andrew H. Beck¹*, Nicholas W. Knoblauch¹, Marco M. Hefti¹, Jennifer Kaplan¹, Stuart J. Schnitt¹, Aedin C. Culhane^{2,3}, Markus S. Schroeder^{2,3}, Thomas Risch^{2,3}, John Quackenbush^{2,3,4}, Benjamin Haibe-Kains⁵*

Experimental artifacts?

Acknowledgements

IRCM

- Nehme Hachem
- Pierre-Olivier Bachant-Winner
- Simon Papillon-Cavanagh
- Nicolas De Jay

- Alain Coletta
- David Weiss
- David Steenhoff
- Robin Duque

- Hugo Aerts
- John Quackenbush

- Andrew Beck
- Pier Paolo Pandolfi
- Nina Seitzer

Thank you for your attention!

Published gene signatures

	8	Gen	eS	igDB		ğ
		Curated	Gene	Signatures		
Home	Browse	Analyze My	Genes	Download	Support	Contact Us
Publication Sc	arch 🙆			O and O and O		
Fublication Se				Gene Search		
Search the full text of ar gene signatures they de as author name, article	rticles to retrieve a lis escribe. Enter one or title, journal name, o	t of publications and th more search terms, su r keywords.	ore uch OR	Search gene annotations a signatures.	to retrieve genes liste	d in GeneSigDB gene
Search the full text of ar gene signatures they de as author name, article	ticles to retrieve a lis escribe. Enter one or title, journal name, o	t of publications and th more search terms, su r keywords.	och OR	Search gene annotations is signatures.	to retrieve genes liste	d in GeneSigDB gene

The **Gene Sig**nature **D**ata**B**ase is a searchable database of fully traceable, standardized, annotated gene signatures which have been manually curated from publications that are indexed in <u>PubMed</u>. Enter a search term above to get started.

News	GeneSigDB Data Release 4
September, 2011: GeneSigDB Data and Website Update We continue to expand. So far we have read and processed almost 3,000 publications to extract 3,515 genes signatures from 1,604 publications. See <u>GeneSigDB Release 4 release notes</u> We have a new tag cloud <u>Browse</u> feature to enable easy browsing of GeneSigDB. Additional <u>download</u> formats. Download GeneSigDB as an R/Bioconductor data file, gmt or compressed flat file formats.	Gene Signatures: 3515 Published Articles: 1604 Genes (Human): 20,523 Tissues and Diseases: More than 50 Species: 3

http://compbio.dfci.harvard.edu/genesigdb/

Benjamin Haibe-Kains

UHN 2014

Compendium of datasets

Benjamin Haibe-Kains

UHN 2014

Advantages of InSilicoDB

- One of the main issues in meta-analysis is data curation
- InSilicoDB allows you to store and access your own curation
- You can download R workspaces directly from the web interface
- Even better, you can programmatically download and access the curated genomic and clinical data

Advantages of InSilicoDB

Example of code:

> library(inSilicoDb2)

> InSilicoLogin(login="bhaibeka@gmail.com", password="747779bec8a754b91076d6cc1f700831")

> platf <- inSilicoDb2::getPlatforms(dataset="GSE2034")</pre>

> esets <- inSilicoDb2::getDatasets(dataset="GSE2034", norm="FRMA", curation="22068", features="PROBE") > InSilicoLogout()

Advantages of InSilicoDB

Output:

> print(esets) ExpressionSet (storageMode: lockedEnvironment) assayData: 22283 features, 286 samples element names: exprs protocolData: none phenoData Measurements: GSM36777 GSM36778 ... GSM37062 (286 total) varLabels: tissue age ... e.dmfs (19 total) featureNames: 1007_s_at 1053_at ... AFFX-r2-P1-cre-5_at (22283 total) fvarLabels: ENTREZID SYMBOL GENENAME Annotation: hgu133a

Generalization of Venet's results (cont'd)

- We scaled all the datasets to make them "comparable"
 - Z score (mu=0 and sd=1) for each gene
- We used *k*-means (*k*=2; unsupervised learning) to classify patients into low- and high-risk group
 - Significance computed using logrank test

Subtypes exhibit different clinical outcome

SCMGENE

UHN 2014

Predictive biomarkers

- Numerous drug compounds have been designed and many others are under development
- Cancer cell lines can be used as preclinical models to screen thousands of drugs

• Pros:

- Cheap and high-throughput
- Simple models to investigate drugs' mechanisms of action
- Cons:
 - No cell lines are like tumors but they represent well the molecular diversity of cancer

Genesets identified by SAPS

- We identified 83 genesets (out of 518 GO biological processes) which yielded significant SAPS scores for at least one drug
- We clustered genesets and drugs using hierarchical clustering

NQO1 is associated with sensitivity [FDR < 10⁻⁵⁴] as it metabolizes the drug to its active hydroquinone form

HSP90 inhibitor

Benjamin Haibe-Kains

2014-02-11

Benjamin Haibe-Kains

Benjamin Haibe-Kains