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(Random) Prognostic Biomarkers 



Prognostic gene signatures (aka genesets) 

• Thanks to high-throughput technologies, the number of 

publications reporting biomarkers in cancer literally exploded 

 

• >3500 gene expression signatures have been published so 

far (MSigDB, GeneSigDB) 

 

• Roughly 300 signatures per year, almost one new signature 

published every day … 
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• Common practice to claim biological relevance for a 

signature/geneset yielding significant prognostic value 

 

• Venet et al. showed that most random genesets can be 

used to significantly discriminate between low and high-risk 

breast cancer patients 

 

 

Prognostic value of genesets 
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Most Random Gene Expression Signatures Are
Significantly Associated with Breast Cancer Outcome

David Venet 1, Jacques E. Dumont2, Vincent Detours2,3*
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Abst ract

Bridging the gap between animal or in vitro models and human disease is essential in medical research. Researchers often
suggest that abiological mechanism isrelevant to human cancer from the statistical association of agene expression marker (a
signature) of thismechanism, that wasdiscovered in an experimental system, with disease outcome in humans. We examined
thisargument for breast cancer.Surprisingly,we found that gene expression signatures—unrelated to cancer—of the effect of
postprandial laughter, of mice social defeat and of skin fibroblast localization were all significantly associated with breast
cancer outcome. We next compared 47 published breast cancer outcome signatures to signatures made of random genes.
Twenty-eight of them (60%) were not significantly better outcome predictors than random signaturesof identical size and 11
(23%) were worst predictors than the median random signature. More than 90% of random signatures . 100 genes were
significant outcome predictors. We next derived a metagene, called meta-PCNA, by selecting the 1% genes most positively
correlated with proliferation marker PCNA in a compendium of normal tissuesexpression. Adjusting breast cancer expression
data for meta-PCNA abrogated almost entirely the outcome association of published and random signatures. We also found
that, in the absence of adjustment, the hazard ratio of outcome association of asignature strongly correlated with meta-PCNA
(R2= 0.9). This relation also applied to single-gene expression markers. Moreover, . 50% of the breast cancer transcriptome
was correlated with meta-PCNA. A corollary was that purging cell cycle genes out of a signature failed to rule out the
confounding effect of proliferation. Hence, it is questionable to suggest that a mechanism is relevant to human breast cancer
from the finding that a gene expression marker for this mechanism predicts human breast cancer outcome, because most
markers do. The methods we present help to overcome this problem.

Citat ion: Venet D, Dumont JE, Detours V (2011) Most Random Gene Expression Signatures Are Significantly Associated with Breast Cancer Outcome. PLoS
Comput Biol 7(10): e1002240. doi:10.1371/journal.pcbi.1002240
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Int roduct ion

Ethics limits experimental investigation on human subjects.

Hence, most experimental biomedical research is performed on

animal and/ or in vitro models. Proving that findings from model

systems are relevant to human health is a major bottleneck.

Hundreds of studies in oncology have suggested the biological

relevance to human of putative cancer-driving mechanisms with

the following three steps: 1) characterize the mechanism in a

model system, 2) derive from the model system a marker whose

expression changes when the mechanism is altered, and 3) show

that marker expression correlates with disease outcome in

patients—the last figure of such paper is typically a Kaplan-Meier

plot illustrating this correlation.

Breast cancer has been a test bed in oncogenomics. Several

landmark studies (reviewed in ref. [1]) uncovered multi-gene

mRNA markers of disease recurrence, which are independent of

classical clinical markers and may provide useful information to

guide treatment. These clinically motivated multi-genes markers,

also called signatures, were derived from compendia of genome-

wide mRNA tumoral profiles by selecting genes whose expression

correlated with outcome [2–5], or with known aggressiveness

markers such as proliferation [6–9] or grade [10–12].

Beyond clinical utility, many signatureswere derived asmarkers
of specific mechanisms and/ or biological states and their

association with outcome was evaluated in the context of studies

structured along the 3-steps outlined above. These include
signatures of stem cells [13–15], aneuploidy [16], wound healing

[17,18], hypoxia [19,20], stromal component [21], epithelial-
mesenchymal transition [22–24]; of mutations in TP53 [25],
ALK5 [26]; of loss of PTEN [27]; of perturbations of E2F1 [28],

bromodomain 4 [29], mir31 targets [30], p18ink4c [31], retinoic

acid receptor [32]; of anchorage-independent growth [33],
activation of modules related to the proteasome and mitochon-

drions [34], etc. Contrasting with this diversity, meta-analyses of

several outcome signatures have shown that they have essentially
equivalent prognostic performances [35,36], and are highly

correlated with proliferation [7–8,37], a predictor of breast cancer

outcome that has been used for decades [38–40].

This raises a question: are all these mechanisms major

independent drivers of breast cancer progression, or is step # 3
inconclusive because of a basic confounding variable problem?To

take an example of complex system outside oncology, let us
suppose we are trying to discover which socio-economical

variables drive people’s health. We may find that the number of
TV sets per household is positively correlated with longer life
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• We first checked whether these results still hold when 

analyzing (much) more datasets 

 

• We used a compendium of 36 breast cancer microarray 

datasets (~4000 patients with survival information) 

 

• Prognostic value of a geneset (Ppure) 

 

Generalization of Venet’s results 
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Cluster patients on 
Candidate gene set 

Survival in Cluster 1

Vs.

Survival in Cluster 2

logrank test  
k-means 

These collection of curated datasets 

will be available soon in InSilicoDB 



Are random genesets prognostic? 

• We generated 1000 random genesets for each size and 

tested their prognostic value 

• If the assumptions of the log-rank test are met, p-values for 

random genesets should be approx. uniformly distributed 
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Many random genesets are prognostic 
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Global population of breast cancer patients 
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WARNING Breast cancers are heterogeneous 

• Breast cancers are clinically diverse 

• Tumors with identical clinical parameters may lead to 

different outcomes 

• And molecularly heterogeneous 

• Identification of subtypes based on gene expressions 
 

• Perou et al. identified 4-6 subtypes  

    exhibiting different clinical outcome 
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• Are the results confounded by the presence of molecular 

subtypes? 
 

• Subtyping using the robust SCMGENE classification model 
 

 

Stratification by molecular subtypes 
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• Four main subtypes: 

• ER+/HER2- Low Proliferation (Luminal A) 

• ER+/HER2- High Proliferation (Luminal B) 

• HER2+ (HER2-enriched) 

• ER-/HER2- (Basal-like) 

UHN 2014 
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Analysis of ovarian cancer 
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• Collection of 11 datasets including ~1700 high-grade serous 

ovarian tumors 
 

• Subtyping using the AngioS classification model 
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Abst ract

Ovarian cancer is the fifth leading cause of cancer death for women in the U.S. and the seventh most fatal worldwide.
Although ovarian cancer is notable for its initial sensitivity to platinum-based therapies, the vast majority of patients
eventually develop recurrent cancer and succumb to increasingly platinum-resistant disease. Modern, targeted cancer drugs
intervene in cell signaling, and identifying key disease mechanisms and pathways would greatly advance our treatment
abilities. In order to shed light on the molecular diversity of ovarian cancer, we performed comprehensive transcriptional
profiling on 129 advanced stage, high grade serous ovarian cancers. We implemented a, re-sampling based version of the
ISISclass discovery algorithm (rISIS: robust ISIS) and applied it to the entire set of ovarian cancer transcriptional profiles. rISIS
identified a previously undescribed patient stratification, further supported by micro-RNA expression profiles, and gene set
enrichment analysis found strong biological support for the stratification by extracellular matrix, cell adhesion, and
angiogenesis genes. The corresponding ‘‘angiogenesis signature’’ was validated in ten published independent ovarian
cancer gene expression datasets and is significantly associated with overall survival. The subtypes we have defined are of
potential translational interest as they may be relevant for identifying patients who may benefit from the addition of anti-
angiogenic therapies that are now being tested in clinical trials.

Citat ion: Bentink S, Haibe-Kains B, Risch T, Fan J-B, Hirsch MS, et al. (2012) Angiogenic mRNA and microRNA Gene Expression Signature Predicts a Novel Subtype
of Serous Ovarian Cancer. PLoS ONE 7(2): e30269. doi:10.1371/journal.pone.0030269
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Int roduct ion

Advanced epithelial ovarian cancer is notable for initial

sensitivity to platinum- and taxane-based chemotherapy [1,2],

but the vast majority of women will develop recurrent ovarian

cancer within 12 to 24 months and will eventually die from

increasingly platinum- and chemotherapy-resistant disease. One

possible reason that ovarian cancer remains refractory to therapy

is that there are distinct molecular subtypes, which different

cellular properties, each of which may require different therapeutic

approaches to effectively treat the disease.

Gene expression profiling data represents the largest source of

genomic data that might be of use in identifying clinically-relevant

subtypes in ovarian cancer, and multiple studies have explored its

use for finding predictive biomarkers and clinically-relevant

subtypes in ovarian cancer [3,4,5,6,7,8,9,10,11]. Tothill et al.

[10] used an unsupervised clustering of gene expression profiles

and proposed the existence of six subtypes in epithelial ovarian

cancer (denoted C1–C6) and a seventh group of unclassifiable

tumors (NC); the C1 subtype, which had the poorest prognosis,

was found to be characterized by expression of a responsive

stromal signature. Dressman and colleagues [5] used a supervised

statistical approach to predict response to platinum-based

treatment from gene expression data; they found evidence linking

chemoresistance to Src and Rb/ E2F pathway activity. Recently

the ‘‘The Cancer Genome Atlas’’ (TCGA, http:/ / cancergenome.
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Int roduct ion

Advanced epithelial ovarian cancer is notable for initial

sensitivity to platinum- and taxane-based chemotherapy [1,2],

but the vast majority of women will develop recurrent ovarian

cancer within 12 to 24 months and will eventually die from

increasingly platinum- and chemotherapy-resistant disease. One

possible reason that ovarian cancer remains refractory to therapy

is that there are distinct molecular subtypes, which different

cellular properties, each of which may require different therapeutic

approaches to effectively treat the disease.

Gene expression profiling data represents the largest source of

genomic data that might be of use in identifying clinically-relevant

subtypes in ovarian cancer, and multiple studies have explored its

use for finding predictive biomarkers and clinically-relevant

subtypes in ovarian cancer [3,4,5,6,7,8,9,10,11]. Tothill et al.

[10] used an unsupervised clustering of gene expression profiles

and proposed the existence of six subtypes in epithelial ovarian

cancer (denoted C1–C6) and a seventh group of unclassifiable

tumors (NC); the C1 subtype, which had the poorest prognosis,

was found to be characterized by expression of a responsive

stromal signature. Dressman and colleagues [5] used a supervised

statistical approach to predict response to platinum-based

treatment from gene expression data; they found evidence linking

chemoresistance to Src and Rb/ E2F pathway activity. Recently

the ‘‘The Cancer Genome Atlas’’ (TCGA, http:/ / cancergenome.

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e30269

• Two main subtypes: 

• Angiogenic 

• NonAngiogenic 

UHN 2014 
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Prognostic value depends on the disease 
Global population of ovarian cancer patients and molecular subtypes 
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Significance analysis of prognostic signatures (SAPS) 
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Vs. 

Candidate geneset

Enrichment Score

Genes ranked based on prognostic association 

Collection of 

random geneset

Enrichment Scores

Candidate 
genesets

Vs. 

Collection of 
random genesets 

Cluster patients on 
Candidate gene set 

Survival in Cluster 1

Vs.

Survival in Cluster 2

 
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• We identified 1300 genesets (out of 5320, MSigDB) which 

yielded significant SAPS scores in at least one cancer 

subtype 

 

• We clustered genesets and disease subtypes using 

hierarchical clustering 

Genesets identified by SAPS 
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• 2 main clusters of subtypes, not based on cancer type 

Prognostic genesets in ovarian and breast cancers 

Benjamin Haibe-Kains 2014-02-11 
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• Proliferation-related genesets are highly prognostic in 

luminal breast cancers 
 

• Immune-related genesets are associated with good 

prognosis in all subtypes but Lumina A breast cancers 

Prognostic genesets in ovarian and breast cancers 

Benjamin Haibe-Kains 2014-02-11 

• The other genesets are 

associated with poor prognosis 

in Basal-like, HER2+ breast 

cancers and ovarian cancers 
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(Random) Predictive Biomarkers 



Pharmacogenomic data 

Resistant vs. sensitive cell lines 
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Large pharmacogenomic datasets 
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• The Cancer Cell Line Encyclopedia (CCLE) initiated 

by Novartis/Broad Institute 

• 24 drugs (IC50) 

• 1036 cancer cell lines 

 

• Large-scale studies have been published recently in Nature 

 
 

• The Cancer Genome Project (CGP) initiated by the 

Sanger Institute 

• 131 drugs (IC50) 

• 727 cancer cell lines 

UHN 2014 



 

CGP     CCLE 

• Drugs: 15 drugs have been investigated both in CGP and 

CCLE 

Paclitaxel Microtubules depolymerization inhibitor 

PD-0325901, AZD6244 Mitogen-activated protein kinase kinase 
(MEK) inhibitor 

AZD0530 (Saracatinib) Proto-oncogene tyrosine-protein Src inhibitor 

Nutlin-3 Ubiquitin-protein ligase MDM2 inhibitor 

Nilotinib BCR-ABL fusion protein inhibitor 

17-AAG (Tanespamycin) Heat shock protein (Hsp90) inhibitor 

PD-0332991 CDK4/6-Cyclin D inhibitor 

PLX4720, Sorafenib RAF kinase inhibitors 

Crizotinib, TAE684 ALK kinase inhibitors 

Erlotinib, Lapatinib EGFR/HER2 kinase inhibitors 

PHA-665752 Proto-oncogene c-MET kinase inhibitor 
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• Joint analysis of CGP and CCLE in a meta-analysis 

framework 

 

• Genesets are summarized by their first principal component 

 

• Significance is computed using a linear regression model 

controlled for tissue type 

 

• We generated 1000 random genesets for each size and 

tested the significance of their predictive value 

 

 

Significant Analysis of Predictive Signatures 

Benjamin Haibe-Kains 2014-02-11 UHN 2014 



Are random genesets predictive of drug sensitivity? 
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Wrap-up 



 

 

Prognostic biomarkers 

• Cancers are molecularly heterogeneous 

  subtypes should be taken into account 

• Many, many genes might be prognostic  

  Prognostic value of genesets should be tested 

      against random sets of genes 

 

 

Predictive biomarkers 

• For some drugs most random genesets are predictive 

  Experimental artifacts? 

 

 

Take home messages 
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Published gene signatures 
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http://compbio.dfci.harvard.edu/genesigdb/ 

 

http://compbio.dfci.harvard.edu/genesigdb/
http://compbio.dfci.harvard.edu/genesigdb/
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Compendium of datasets 
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http://insilicodb.org 
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• One of the main issues in meta-analysis is data curation 

• InSilicoDB allows you to store and access your own 

curation 

 

• You can download R workspaces directly from the web 

interface 

 

• Even better, you can programmatically download and 

access the curated genomic and clinical data 

 

Advantages of InSilicoDB 
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Example of code: 

 

> library(inSilicoDb2) 

> InSilicoLogin(login="bhaibeka@gmail.com", 

password="747779bec8a754b91076d6cc1f700831") 

> platf <- inSilicoDb2::getPlatforms(dataset="GSE2034") 

> esets <- inSilicoDb2::getDatasets(dataset="GSE2034", 

norm="FRMA", curation="22068", features="PROBE") 

> InSilicoLogout() 

 

Advantages of InSilicoDB 
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Output: 

 

> print(esets) 

ExpressionSet (storageMode: lockedEnvironment) 

assayData: 22283 features, 286 samples  

  element names: exprs  

protocolData: none 

phenoData 

  Measurements: GSM36777 GSM36778 ... GSM37062 (286 total) 

  varLabels: tissue age ... e.dmfs (19 total) 

featureNames: 1007_s_at 1053_at ... AFFX-r2-P1-cre-5_at (22283 total) 

  fvarLabels: ENTREZID SYMBOL GENENAME 

Annotation: hgu133a 

Advantages of InSilicoDB 
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• We scaled all the datasets to make them “comparable” 

• Z score (mu=0 and sd=1) for each gene 

 

• We used k-means (k=2; unsupervised learning) to classify 

patients into low- and high-risk group 

• Significance computed using logrank test 

 

 

Generalization of Venet’s results (cont’d) 
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Cluster patients on 
Candidate gene set 

Survival in Cluster 1

Vs.

Survival in Cluster 2

logrank test  
k-means 



 

 

Subtypes exhibit different clinical outcome 
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• Numerous drug compounds have been designed and many 
others are under development 

 

• Cancer cell lines can be used as preclinical models to 
screen thousands of drugs 

 

• Pros: 

• Cheap and high-throughput 

• Simple models to investigate drugs’ mechanisms of 
action 

 

• Cons: 

• No cell lines are like tumors but they represent well the 
molecular diversity of cancer 

 

 

Predictive biomarkers 
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• We identified 83 genesets (out of 518 GO biological processes) 

which yielded significant SAPS scores for at least one drug 

 

• We clustered genesets and drugs using hierarchical clustering 

Genesets identified by SAPS 
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2014-02-11 

HSP90 inhibitor 

NQO1 is associated with 
sensitivity [FDR < 10-54] as it 
metabolizes the drug to its 
active hydroquinone form 
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EGFR/HER2 kinase inhibitors 

EGFR dependent pathways and 
downstream regulators are 
associated to sensitivity 
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ALK inhibitors 

Genes involved in immune 
response are associated to 
resistance 
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MEK inhibitors 

EGFR dependent pathways and 
downstream regulators are 
associated to sensitivity 

Benjamin Haibe-Kains 

Genes involved in cytoskeleton 
organization and microtubules 
are associated to resistance 


