APPLICATION OF ROBOTICS IN UPPER LIMB REHABILITATION POST-STROKE: EXPERIENCES OF DEVELOPING A ROBOTIC SYSTEM

ROSALIE WANG, PHD, OT REG (ONT.)
TORONTO, ON, CANADA
2017 APRIL 10

Outline

1. Stroke rehabilitation in Canada
2. Currently-available robotic technologies for upper limb rehabilitation
3. Clinical evaluation and implementation of robotics
4. Considerations for development and implementation of upper limb robotic rehabilitation system

Current state of stroke rehab

- Repetitive, labour intensive
- Limited 1:1 therapist-patient time
- Lack of quantitative measures
- Economic pressures
- Disparity in access
- Home rehab is self-directed with little professional or quantitative feedback
On rehab services, 5th Ed (2015)

- Inpatient - early, “adequate” intensity, goal-directed, tailored, task-oriented, coordinated, early discharge planning
- Therapists recommended to spend 80% of time in direct patient care; 6:1
- Minimum 3 hours direct task-specific therapy, 5 days/week
- Lack of outpatient and community-based rehab

“Robotics are an emerging and developing area and stroke rehab programs should begin to build capacity to integrate robotic technology into stroke rehab therapy to appropriate patients as the research evidence suggests, and in the future incorporate this therapy as part of comprehensive therapy where available.”

Robotic technologies for upper limb rehab

Poly/Robo, Dublin, IR
University of Salford, UK
École de technologie supérieure (ÉTS), Canada
IPAM, University of Leeds, UK
University of Texas, USA

Centre for Applied Biomechanics and Rehabilitation Research, USA
Robotic technologies for upper limb rehab

Search terms:
(rehabilitation or therapy) and (arm or "upper limb" or "upper extremity") and robotics and stroke

PubMed: 527 results
Reviews: 76*
Scopus: 1176 results
Reviews: 113*

* Not all systematic and related to therapy outcomes

Number of Google Scholar Documents by Year

6250 documents (since March 2017)
"CRISPR" 139,000 documents (since March 2017)

What is the added value of robotics?

• Better quantify performance changes – can be superior to current clinical measures
• Motivating, engaging games and interfaces – encourage, provide real-time feedback
• Adaptive/intelligent systems – do not need therapists to be constantly present
• Therapists can focus on functional activity training and community integration, less on repetitive activities (robots don’t get tired!)

What can we buy if we had the money?*

• Arm Robot – "MIT Manu" – R&D began 20+ years ago, MIT Mechanical Engineering, Hermano Krebs
• Arm Robot – Elbow/shoulder, about $70 - 80K
• Wrist Robot – Pronation/supination, flexion/extension, radial/ulnar deviation
• Hand Robot (with Arm Robot) – Grasp, release, pinch

* LATEL Small-part motion Technology and Systems Lab
What can we buy if we had the money?*

- ArmoPower - Robotic arm exoskeleton, about $340K
- ArmoSpring - Exoskeleton with integrated spring mechanism, about $60K
- ManoVoSpring - Grasp/release
- ArmoBoom - Overhead sling, suspension system, about $17K

What can we buy if we had the money?*

- UlGo
 - UL rehabilitation, all stages of recovery
 - 5 modes - passive support → guided motion
 - Developed in Israel
 - 3D repetitive arm movements, fully motorised robotic arm
 - About $85K

What can we buy if we had the money?*

- Armotion
 - Swiss company
 - Moderate and severe neurologic or orthopedic conditions
 - Has passive and active assist modes, force feedback and force multiplier
 - Visual feedback with daily activity related games
Clinical evaluation and implementation

Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke (Cochrane Systematic Review, Mehrholz et al, 2015)

- RCTs – Electromech/robot-assisted vs other rehab, placebo, no treatment
- 34 trials (1160 stroke survivors)
- Improves
 - Arm muscle strength
 - Arm function
 - Generic ADLs

Clinical evaluation and implementation (Mehrholz et al, 2015, cont.)

- Adverse events rare
- Drop out rate comparable to comparison groups
- ***Evidence quality rated as “low”
- Variability in type of treatment, intensity, duration, amount, participants
Clinical evaluation and implementation

- RCTs – Robot-assisted vs non-robotic treatment
- 44 trials (1362 stroke survivors), 38 trials in meta-analysis (N=1206)
- Improves
 - Motor control (e.g. Fugl-Meyer Assessment) – significant but small changes
 - Muscle strength (note: negatively effects tone)
- No effect
- Upper limb capacity (e.g. Wolf Motor Function Test)
- Basic ADLs

Clinical evaluation and implementation

(Veerbeek et al. cont.)
- No serious adverse events
- Evidence quality on PEDro Scale – median was 6 – indicating "high quality" (scale 0-10)
- Subgroup analyses

Clinical evaluation and implementation

What are some of the unknowns?
- Which treatment modalities? For which patients and when?
- What treatment intensity and duration?
- How do we tailor our treatment programs?
- What control strategies and feedback approaches?
- How can we measure changes better? Statistical vs clinical significance
- How can we transfer motor recovery gains to functional performance in daily life?
- Is it cost-effective???
Clinical evaluation and implementation

Implementation barriers
- Convincing clinical evidence still lacking
- Few are commercially available
- Still high cost – initial purchase, training, maintenance
- Technology complexity – needs high usability e.g. set-up, programming
- Safety – not consistently reported in studies
- How to best use them in practice?

Development and implementation considerations

AIoT robotic system development
- Applied evidence-based approach in design of robotic system
- Observational sessions, international survey, and individual and group feedback sessions with OTs and PTs ➔ desirable features for robotic system intervention
Objectives:
• To understand current rehabilitation methods and aims
• To define features desirable in upper limb rehabilitation robot

Methods:
• Online questionnaire with 85 questions distributed to professional therapist organizations & listservs
• Analysis based on descriptive statistics

What do therapists want?
Lu, E. et al. (2011). Disability & Rehabilitation: Assistive Technology

Data analyzed for 233 respondents:
• Mainly from Australia, Canada, USA
• Mainly physiotherapists (72%) and occupational therapists (27%)

Main approaches to upper limb rehabilitation:
• Repetitive task training (88%)
• Motor relearning (76%)
• Neurodevelopmental/Bobath (65%)
• Use of robot assisted (6%)

What do therapists want?

Desired robot features
• Facilitate many arm movements
• Be usable in a seated position
• Give biofeedback to the user
• Have virtual ADL
• Useful for clients to use at home
• Adjust resistance based on client performance
• Modular
• Maintain proper joint alignment
Understanding clinical applicability and implementation issues

Objectives:
• To gain therapists’ feedback on prototype haptic robot, AI controller and gaming environments

Methods:
• Focus group (n=7) and individual feedback sessions (n=6) with OTs and PTs
• Thematic analysis to identify themes related to design, clinical needs and solutions.

<table>
<thead>
<tr>
<th>Value-added features</th>
<th>Major design concerns</th>
<th>User characteristics</th>
<th>Features of therapist training programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to work with patients in lower levels of recovery with haptics</td>
<td>Need to monitor/correct postural compensations – solutions identified</td>
<td>Consideration for cognition, visual-perceptual abilities and pain precautions</td>
<td>Shorter is better (1-2 hours)</td>
</tr>
<tr>
<td>Capacity to customize activity parameters for changing abilities</td>
<td>Limitations of 2D therapy – when evaluating cost trade-off of 3D system and haptics, opted for haptics</td>
<td></td>
<td>Short documented instructions and demonstrations</td>
</tr>
<tr>
<td>Potential to quantitatively document improvements</td>
<td></td>
<td></td>
<td>Hands-on “play” with system</td>
</tr>
</tbody>
</table>

AIRR Robotic System

• 2 degree of freedom, end effector robot for shoulder and elbow therapy
• Haptic – resistance and assistance
• Lightweight and portable
• Low cost
• Self-contained unit
• Adaptive – vary exercise challenge
• Robotic data: e.g. range of motion, movement speed, error, smoothness
AIRR Robotic System therapy evaluation

Wang, R.H., et al. (in preparation)

Purpose: To evaluate an outpatient program for older adult chronic stroke survivors that uses the AIRR robotic system, individualized goal setting, and homework exercises.

Objectives:
1. To evaluate program in improving upper limb movement function and goal achievement.
2. To evaluate satisfaction with program (e.g. overall therapy program, robot, service delivery).

Study design:
- Multiple single subject study design (A1-Baseline, B-Therapy, A2-Baseline, F/U-Follow-up).
- Surveys and interviews.

Participants:
- Inclusions: 60 years+, at least 6 months post-stroke, arm recovery stages 3-5 (out of 7) on Chedoke-McMaster Stroke Assessment.
- Exclusions: other upper limb neurological or musculoskeletal conditions, shoulder subluxation/pain limiting active treatment.
AIRR Robotic System therapy evaluation

Procedures
- Assessments: demographics, robotic, upper limb function
- Intervention: customized 8-week program; goal setting using Goal Attainment Scaling, robot exercises 1 h x 3 x / week and homework
- Surveys, interviews after program completion
- 1 follow-up session after 4 weeks

AIRR Robotic System therapy evaluation

Outcome measures
- Robot measures collected throughout study: range of motion (ROM) and movement smoothness (MSm), speed (MS), error (ME)
- Clinical measures collected throughout study: Fugl-Meyer Assessment—Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), Motor Activity Log (MAL-14)
- Goal Attainment Scaling (GAS)
- Satisfaction: items from Quebec User Evaluation of Satisfaction with Technology (QUEST2.0) scale and Outpatient Service Satisfaction Survey (UHN-OSS)

AIRR Robotic System therapy evaluation

- 1) Waypoint exercise
- 2) Bouncing ball game
- 3) Paddle game
- 4) Boat game
AIRR Robotic System therapy evaluation

Participants:
- n=11 (9 participants completed study, 2 withdrawn)
- Age range 60-73
- 3 female
- Post-stroke range: 10 months to 23 years

Preliminary Results (*first 6 participants):**
- Visual analysis of robotic data shows trends toward increases in ROM and MSm, and possible increases in MS and decreases in ME
- Minimal clinically important differences (MCID) were achieved for 4 of 6 participants on FMA-UE
- 5 of 6 participants achieved their goals on GAS
- MCID not found for ARAT
- Analysis of MAL-14 is pending
- Satisfaction was high (QUEST2.0 average: 4.6/5, UHN-OSSS: 4.8/5)

Interview feedback

Positive aspects and facilitators to participation
- Experienced improvements in arm abilities
- Supportive team of staff and family
- Feedback on movement and progress from staff and robot were beneficial

Robotics in part of therapy program
- Combination of therapy with robot and therapist appreciated

Challenges or barriers to participation
- Session frequency too high
- Goal setting and self-motivation to participate in therapy can be challenging
- Transportation to appointments can be difficult or unreliable
- Missing appointments due to holidays, acute illness, weather

Areas for improvement
- Occasional hardware and software issues with robot
- Further gamification and more games needed
- Robot hand hold or arm support needs better design
- Need to ensure clinical staff understand automatic adaptations of system
- Therapy sessions schedule needs revision
- More can be offered for wrist and hand therapy
- Continued psychosocial support beyond therapy trials
Conclusions

- Preliminary findings suggest that the program shows promise to benefit older adults with chronic moderate upper limb disability after stroke
- Further data analysis and study completion are pending

Utility of robotic measures

(Zariffa, J. et al, in preparation)

Predictive modeling of upper limb rehabilitation in stroke patients using robotic data

Objectives:
- Identify a model that can be used to accurately predict clinical assessment outcomes based on a set of robotic metrics
- Assess the model's ability to track the patient's rehabilitation over time

Postural monitoring and feedback

Taati, B. et al (2012), Biomedical Robotics and Biomechatronics (BioRob)

Dolatabadi, E. et al (2017), Pervasive Health (submitted)
...Work in progress

- Input from clinicians and stroke survivors is needed for useful and usable intervention
- Simultaneous development of multiple robotic system components is needed – robot hardware, application software, interactive therapy activities with feedback, and therapist interfaces to operate system and make use of data
- Robotic systems used in stroke rehab are complex interventions - need to examine implementation as adjuncts to current therapy, integration into clinical practice and settings, practice and delivery models
- Need to develop multi-site studies to examine efficacy and effectiveness of interventions using robotics

Acknowledgements

Clinical team
Cindy Ho (Research OT), Debbie Hebert (Clinic Lead, Rocket Family Upper Extremity Clinic)

Development team
Marge Coakran (Developer), Dr. Alex Mihailidis (Sr. Scientist, Toronto Rehab), Dr. Jose Zariffa (Scientist, Toronto Rehab), Dr. Babak Taati (Scientist, Toronto Rehab)

Thank you!