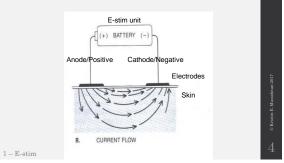


Objectives

At the end of this session participants will be able to:

- Explain the rationale for using electrical stimulation to address spasticity.
- \circ Apply 1-channel, surface electrical stimulation to the upper limb with the goal of reducing spasticity.



Outline

- 1. Overview of electrical stimulation
 - · What, Why & Who
 - Use of e-stim in rehabilitation
- 2. Overview of spasticity
 - Terminology
 - \cdot Pathophysiology
- 3. Research evidence
 - Guidelines
 - \cdot Upper limb examples
 - \cdot Meta-analysis
- 4. Application of ES for spasticity • Temporary & longer-term effects
 - Parameter settings

Electrical Stimulation

Application of current to the skin & underlying tissues

NeuroMuscular Electrical Stimulation (NMES)

- Non-specific term
- \bullet Applies to any ES intervention using muscle contraction, regardless of treatment goal
- To enhance muscle strength & endurance

1 - E-stim

Functional Electrical Stimulation (FES)

Use of electrical stimulation of the peripheral nervous system to contract muscles during functional activities such as standing, walking, reaching, grasping, etc.

Why use NMES/FES?

• 2 broad goals: orthotic versus therapeutic

Orthotic (FES)

- Neuroprosthesis
- \cdot ES as orthotic substitute for a particular muscle function
- \cdot Client regains independence only with FES

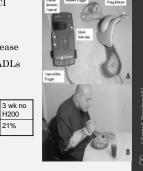
1 - E-stim

Orthotic Effect - Example

- Alon & McBride 2003 SCI
- Bioness H200
- · Practice of grasp, hold, release
- · Studied success rate of 2 ADLs

3 wk with

H200


100%

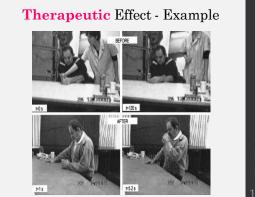
H200

21%

Results of 1 ADL task: 1 wk with H200

93%

1 - E-stim


Baseline

21%

Therapeutic

- · Re-establish voluntary control of body position & movement after disruption of motor control mechanisms
- Muscle re-education
- · Needs to be applied in context of motor learning • Functionally relevant activities
 - Intermittent feedback
 - · Client must be an active participant

1 - E-stim

Popovic et al. 2002

What causes a therapeutic effect?

- ↑ muscle strength (Glanz et al. 1996)
- ↑ motor unit recruitment (Newsam & Baker 2004)
- Strengthened corticospinal connections (Everaert et al. 2010)
- ↑ cortical activation (Page et al. 2010)

1 - E-stim

Why E-stim?

- \circ Electrical currents depolarize nerves, causing sensory & motor responses that are used to increase muscle strength & control
- Increase the intensity of rehabilitation • Train at higher contraction intensities (Vanderthommen et al. 2003)
- Simultaneously addresses several impairments: weakness, reduced selective motor control, spasticity, sensation/awareness
- Another tool in your tool bag

1 - E-stim

Why E-stim?

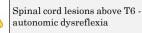
- · Strong evidence to support its use
 - · Evidence-based Review of Stroke Rehabilitation (ebrsr.com)
 - Spinal Cord Injury Research Evidence (scireproject.com)
- · Emerging evidence to support its use
 - Clinical Practice Guideline for the Rehabilitation of Adults with Moderate to Severe TBI (braininjuryguidelines.org)
 - Cerebral Palsy (Novak et al. 2013)

1 – E-stim

Potential Applications

Potential goals:

- Maintain or ↑ ROM
- \downarrow edema
- · Muscle strengthening
- · Prevent muscle atrophy, shoulder subluxation
- · Assist with standing, sitting, transfers
- Improve gait function
- · Improve UE function
- · Reduce spasticity
- Assist with breathing...


1 - E-stim

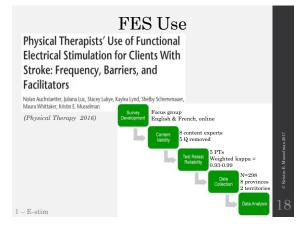
Who is *most* appropriate?

- Stroke
- Brain injury
- Spinal cord injury (lesions above T12)
- · Cerebral palsy
- · Multiple sclerosis
- · Parkinson's Disease
- Familial/hereditary

- Polio • Motor neuron disease
- Guillain-Barre syndrome
- Complete peripheral nerve damage
- Need intact
- peripheral nerve
- spastic paraparesis

Contraindications & Precautions

- Implanted electronic devices
- Active DVT
- Pregnancy
- Recently radiated tissue (past 6 months)
- Skin irritation/damage
- $\cdot \quad \downarrow \ {\rm sensation}$
- \downarrow cognition
- Osteoporosis
- Uncontrolled epilepsy
- Conditions that may be exacerbated by ↑ circulation (e.g. infection, neoplasm)


(Houghton et al. Physiotherapy Canada 2010)

⁰ Kristin E. Musseli

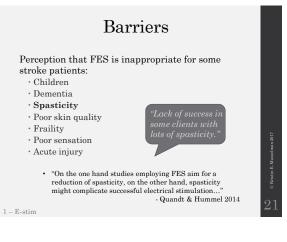
Have you used e-stim in your practice or research? If yes, for what purpose?

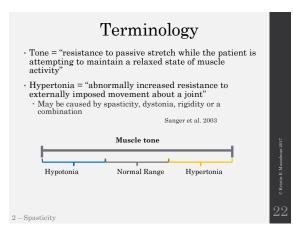
Have you used e-stim in your practice or research to address spasticity?

1 - E-stim

Results: FES Use

Goal	Never	Rarely	Occasionally	Sometimes	Frequently	Most of the Time
Prevent/↓ shoulder subluxation	48.47%	20.68%	10.51%	9.15%	5.76%	5.42%
† arm function	48.81%	16.72%	9.90%	9.56%	8.87%	6.14%
↑ walking function	38.85%	18.24%	16.89%	10.47%	8.11%	7.43%
† muscle strength, endurance	39.66%	20.34%	14.58%	12.54%	9.15%	3.73%
hypertonia/spasticity	59.93%	17.47%	8.56%	7.19%	4.79%	2.05%
↑ sensation ver-0% of the time, rarely-1%-20%		16.10% casionally-21%	7.19% -40% of the time, so	3.08% metimes=41%-59%	3.08% of the time, frequent	0.34% tly=60%-79%
	% of the time, or				of the time, frequent	

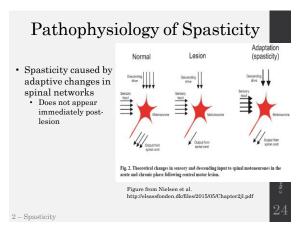

 $1-\mathrm{E} ext{-stim}$

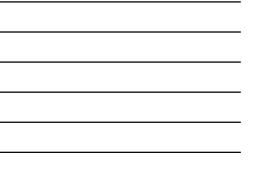

Barriers

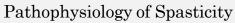
- 4 main themes identified:
- 1. Lack of resources
- 2. Therapist lacking knowledge or training in FES
- 3. Perception that FES is inappropriate for some stroke patients
- 4. Therapist preference

53% of respondents would like to increase their use of FES

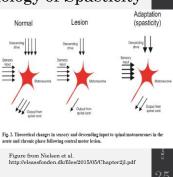
1 - E-stim

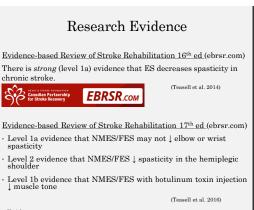

Spasticity


- "Hypertonia in which 1 or both of the following signs are present:
 - 1. Resistance to externally imposed movement increases with increasing speed of stretch & varies with direction of joint movement
- 2. Resistance to externally imposed movement rises rapidly above a threshold speed or joint angle."


Sanger et al. 2003

"Spasticity is something you feel, dystonia is something you see." - Amy Bastian PT PhD


2 – Spasticity

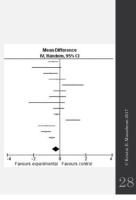


- Underlying mechanisms of adaptive change are not known
- Imbalance in inhibitory & excitatory input to alpha motor neurons

3 - Evidence

Examples from the Literature

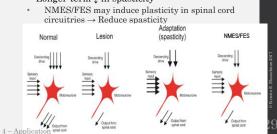
Sahin et al. 2012


- Chronic stroke (n=42) with forearm flexor spasticity (Modified Ashworth Score (MAS) score 2 or 3)
- RCT with 2 arms
 - Arm 1: stretching with PNF after hot treatment followed by 15 min of NMES to wrist extensors
 - Arm 2: stretching with PNF after hot treatment
- 5 days/week for 20 sessions total
- Outcomes assessed pre- & post-intervention: MAS, wrist extension ROM, total FIM, Brunnstrom motor staging
- + Both groups showed significant improvements on all outcomes; Arm 1 showed significantly greater improvement than Arm 2

```
3 - Evidence
```

Stein et al. 2015

- · Meta-analysis of effect of NMES (w/wout other therapy) vs. placebo or other intervention
- Primary outcome: MAS
- 14 RCTs included
- . NMES \downarrow spasticity: -0.30, 95% CI -0.58 - -0.03), I² = 81% (high heterogeneity)
 - *Need for biomechanical & electrophysiological assessment of spasticity (Nielsen & colleagues)


3 – Evidence

Management of Spasticity with ES

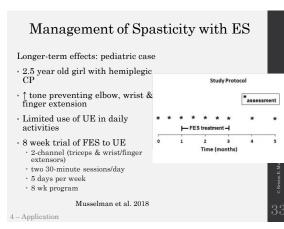
- Temporary \downarrow in spasticity
- Motor-level stim
- Sensory-level stim
- Longer-term \downarrow in spasticity

Management of Spasticity with ES

- Temporary \downarrow in spasticity reported when <u>motor-</u> level ES applied to:
 - 1. Antagonist (Alfieri 1982, Bakhtiary & Fatemy 2008)
 - · May be due to reciprocal inhibition of spastic muscle
 - 2. Spastic muscle (Robinson et al. 1988)
 - · Causes neuromuscular fatigue at higher frequencies
 - Antidromic propagation of APs to, & post-tetanic potentiation of, Renshaw cells in spinal cord inhibit alpha motor neurons of spastic muscle
 - #1 preferred because also involves training of weak, ۰ non-spastic muscle

Management of Spasticity with ES

- Temporary \downarrow in spasticity reported with ٠ sensory-level ES applied to:
 - 1. Dermatomes of nerves supplying spastic muscles (Bajd et al. 1985)
 - 2. Skin over peripheral nerve trunk, branches of which innervate spastic muscles & their antagonists (Levin et al. 1992, Goulet et al. 1996, Chung & Cheng 2010)
- Sensory-level ES of UE reported to reduce LE . spasticity (Walker 1982)
 - · Depression of spinal reflex excitability
- 4 Application


Management of Spasticity with ES

Longer-term effects: pediatric case

- 2.5 year old girl with hemiplegic CP
- ↑ tone preventing elbow, wrist & finger extension
- · Limited use of UE in daily activities
- 8 week trial of FES to UE · 2-channel (triceps & wrist/finger extensors)
 - two 30-minute sessions/day
 - $^\circ$ 5 days per week
 - · 8 wk program

4 – Application

Musselman et al. 2018

Management of Spasticity with ES

Evidence-based Review of Stroke Rehabilitation 17^{th} ed Level 1b evidence that NMES/FES with botulinum toxin injection \downarrow muscle tone

How ES might ↑ anti-spasticity effect of botox:

- 1. Paralytic effect of botox starts earlier when toxin uptake \uparrow by ES
- 2. Moving muscles through flexion-extension cycles may mechanically spread toxin
- 3. Direct effects of ES on hypertonicity

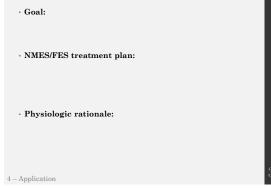
(Wilkenfeld 2013)

4 - Application

Case Study

 History: Tom is a 28 year-old teacher who suffered a traumatic brain injury from a motor vehicle crash 3 months ago (he was in a coma for 2 weeks). He was recently admitted to a rehabilitation facility.

• Evaluation:


- · ROM
 - PROM L elbow extension: -30
 - · PROM L wrist extension: -20 from neutral
 - · Unable to extend fingers to neutral position
- Spasticity

 $\,\cdot\,$ Modified Ashworth Grade 3 in L biceps & wrist extensors

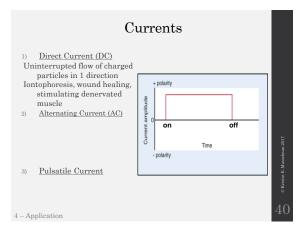
- Functional Assessment
 - Requires minimal assistance to maintain sitting dynamic balance
 Unable to bear weight in L UE to assist with maintaining balance
- · Unable to use L upper extremity for ADLs

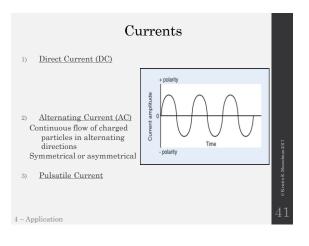
4 - Application

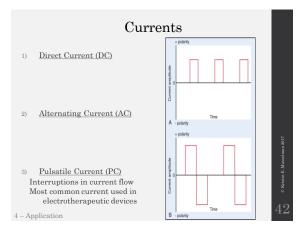
Case Study

E-stim Parameters

Don't be a "Knobologist"!


"Knobology is a 'tongue-in-cheek' term for the study of application without theory...the term for students and clinicians who want to know only which knobs on a therapeutic modality to turn and are uninterested in why they are doing so...patients would suffer from inadequate treatment."


(Knight & Draper, Therapeutic Modalities: The Art and Science)


4 – Application


E-stim Parameters

- 1. Currents
- 2. Waveform, polarity
- 3. Electrode placement
- 4. Amplitude
- 5. Pulse duration
- 6. Frequency
- 7. Ramp up/down
- 8. On/off time

Waveform

- Shape or visual representation of current over time
- Biphasic can be symmetrical (fig A) or asymmetrical
- Asymmetrical can be balanced (fig B) or unbalanced (fig C)

t + party - par

4 - Application

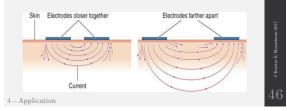
Polarity

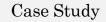
- Cathode/anode
- Issue only when current is monophasic or asymmetrical, unbalanced, biphasic PC
- In these cases, cathode (negative) will elicit greater response for same charge than anode

4 – Application

Waveform/Polarity

- Important for discrete and comfortable stim
- * Symmetric biphasic most comfortable for larger muscles
- * Asymmetric, unbalanced required for small muscles to ensure specificity (Baker et al. 1988)
 - Cathode on motor point
 - http://www.axelgaard.com/Education/Motor-Point-Location-for-Electrode-Placement

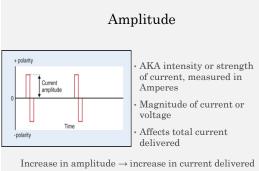



4 - Application

Electrode Size & Placement

Electrode size:

- * \downarrow size will \uparrow current/charge density (amount of current delivered per unit area of electrode)
- Electrode placement:
- · Distance between electrodes affects depth of current

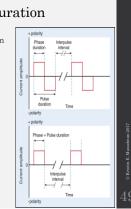


Electrode position:

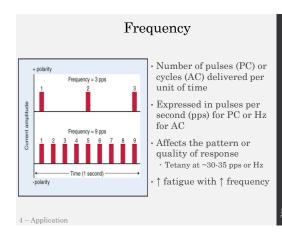
http://www.axelgaard.com/Education/Elbow-Extension http://www.axelgaard.com/Education/Wrist-and-Finger-Extension

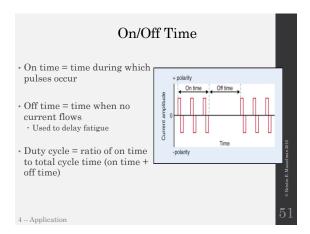
· Waveform/polarity:

4 – Application

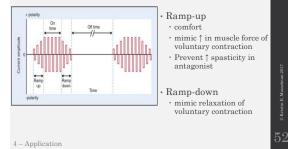

Increase in amplitude \rightarrow increase in current delivered \rightarrow increase in number of motor units recruited \rightarrow increase muscle force generated

4 - Application


Pulse Duration

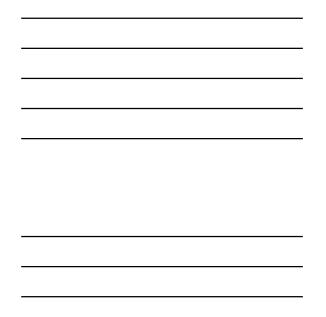

- AKA pulse width (cycle duration for AC)
- Length of time 1 pulse lasts
- Units: μs (10⁻⁶) or ms (10⁻³)
- Affects total current delivered
- $\cdot \uparrow {\rm pulse}$ duration to $\uparrow {\rm charge}$
- Motor response >100 μs

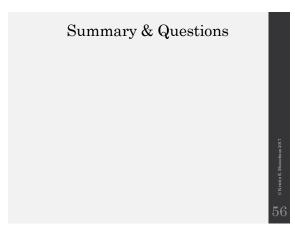
4 - Application


D Kristin E

Ramp Up/Ramp Down

Time it takes for current to increase from zero to maximum amplitude and vice versa


Parameters	Settings
Pulse/cycle duration	150-200µs small muscles, 200-350µs large muscles
Current amplitude	To visible contraction
Ramp-up/Ramp- down	At least 1s (longer when stimulating antagonist to spastic muscle)
Frequency	35-50 pps
On time	2-5s
Off time	2-5s; equal on:off times
Treatment time	10-30min, every 2-3hrs until spasm relieved
Electrode configuration	Over spastic muscles or antagonists


4 – Application

From: Cameron, Michelle H. Physical Agents in Rehabilitation: 53 From Research to Practice. 4th ed. 2013.

Case Study	
· Ramps:	
· On/off time:	
· Intervention duration:	
4 – Application	Ę

