

A smartphone app for post Stroke Arm Recovery

Steven Wolf Gert Kwakkel Michelle McDonnell Mark Bayley

OBJECTIVES

By the end of the presentation, participants should be able to:

- 1. Discuss strategies for predicting recovery of the arm post stroke
- 2. Use a smartphone app to identify the best practices for each stroke patient depending on the time post-stroke and their severity of impairment

Case study 1 - Kevin

- 56 yr old man suffered
- R middle cerebral artery territory ischemic stroke on February 20 2017

Current arm function

- Shoulder shrug and some active shoulder flexion
- Movement patterns dominated by compensatory trunk lean and shoulder shrug and no active hand movement
- Experiences pain at rest, during night and on external rotation
- No swelling or significant spasticity
- No finger extension

Case Scenario

- What is probability of Kevin having some hand dexterity at 6 months
- What treatments are evidence based for Kevin at this stage

Historical Perspective

- March 10, 2010 Nottingham Grantham Norwich (UK)Wolf, van Vliet, Pomeroy
- March 24, 2010 Canadian Stroke Network (Ottawa, Canada)
- April September, 2010 --- assemble team
- October 24, 2010 Wolf/Bayley ASNR/ACRM meeting, Montreal)
- October 2011 review stroke guidelines (Canada, USA, UK, Scotland, The Netherlands, Australia, New Zealand)
- October 2011 define working groups to seek evidence (PEDro, PubMed, Cochrane, etc.) and define interventions; Outcome group to define associated outcomes

VU University Medical Center Amsterdam

Historical Perspective: continued

- 2011-2013: meet annually for updates and multiple international Web EX calls
- 2014: Bayley secures funds for securing app company
- 2015: App prototype completed
- April 10 2017 Launch on the App store and Google play

Janice Eng, PhD, OTR, PT	University of British Columbia, Canada	1
Carol Richards, Ph.D., PT	Laval University, Canada	1
Sarah Blanton, DPT	Emory University, USA	2
Michelle, McDonnell, PhD, PT	University of South Australia Australia	2
Marilyn MacKay-Lyons, PhD, PT	Dalhousie University, Canada	3
Gert Kwakkel, Ph.D	Vrije University Medical Center The Netherlands	3,6

Carolyn Baum, Ph.D, OTR/L	Washington University, USA	4
Lisa Connor, Ph.D, OTR/L	Washington University , USA	4
Katherine Lang, PhD, PT	Washington University, USA	4
Nancy Salbach, Ph.D. PT	University of Toronto, Canada	5
Carolee Winstein, PhD, PT	University of Southern California, USA	5
Mindy Levin, PhD, PT	McGill University, Canada	6
Mark Bayley, MD	University of Toronto, Canada	6
Charlotte Hager, PhD	University of Umea, Sweden	6
		j)

Cathy Stinear, Ph.D.	University of Auckland, New Zealand	7
Leanne Carey, PhD, OT	La Trobe University, Australia	7
Judith Deutsch, Ph.D., PT	Rutgers University, USA	7
Paulette van Vliet, PhD, PT	University of Newcastle, Australia	8
Valery Pomeroy, Ph.D., PT	University of Norwich, UK	8
Steven L. Wolf, Ph.D., PT	Emory University, USA	8
Catherine Salter, PhD, PT	University of Western Ontario Canada	ALL
Robert Teasell, M.D.	University of Western Ontario Canada	ALL
Total Team		ALL

VU University Medical Center Amsterdam

(Û)

Contributing clinicians and scientists:		
Catherine Buetefisch, MD,	Emory University	
PhD		
John Chae, MD	Case Western Reserve University	
Alex Dromerick, MD	Georgetown University	
Pamela Duncan, PhD, PT	Wake Forest University	
Mark Goldstein, E ED	ΑΡΤΑ	
Ralph Nitkin, PhD	NIH	
Nicole Korner Bitensky, PhD,	McGill University	
OTR/L		
W. Zev Rymer, MD, PhD	Northwestern University	
Krish Sathian, MD, PhD	Emory University	
Susan Baracca, PhD, PT	McMaster University	l I

VU University Medical Center Amsterdam

Objective 1

 Discuss strategies for predicting recovery of the arm post stroke

Random selection of patients with an upper limb paresis post stroke (N=10)

The EPOS cohort study (9 hospital stroke units)

Outcome on ARAT 6 months post stroke (N=188)

Nijland RH et al, Stroke 2010;41(4):745-50.

Probabilities of achieving some dexterity at 6 months after stroke (N=188)

ARAT \geq 10 at 6 months

Finger Extension	Shoulder Abduction	True Negatives N	False Negatives N	False Positives N	True Positives N	Prob.
Model at day	/ 2 : P=	1/(1+1*(EXF	P(-1.119+2.8	807*X ₁ +2.14	9*X ₂)))	
FM-FE ≥1	MI-SA ≥9					
+	+	38	12	8	98	0.98
+	-					0.89
-	+					0.71
	-					0.25
2.40						
347		er y				

Probabilities of achieving some dexterity at 6 months after stroke (N=188)

Finger Extension	Shoulder Abduction	True Negatives N	False Negatives N	False Positives N	True Positives N	Prob.
Model day	5	P=1/(1+1*(EXP(-1.874+3.070*X ₁ +3.075*X ₂)))				
FM-FE ≥1	MI-SA ≥9					
+	+	38	6	8	104	0.98
+	-					0.78
-	+					0.78
	-					0.14
Model day	9	P=1/(1+1*(EXP(-1.815+3.224*X ₁ +2.449*X ₂)))			(₂)))	
FM-FE ≥1	MI-SA≥9					
+	+	38	6	8	104	0.98
+	-					0.80
-	+					0.65
-	-					0.14

Nijland RH et al, Stroke 2010;41(4):745-50.

Return of voluntary finger extension: Prognosis for recovery of upper limb capacity (N=91)

Kaplan-Meyer curve for return of voluntary finger extension (N=42)

Return of finger extension: Prognosis for recovery of upper limb capacity (N=91)

Prognosis for recovery of upper limb capacity following ARAT

Iddentifying false negatives in those with an initial prognosis following SAFE (N=91)

- Multivariable regression analysis
- Probabilities of regaining upper limb capacity at 6 months

Lower limb motor function (MI)	Visuospatial neglect (LCT)	Somatosensory deficit (EmNSA)	Predicted probability
Good	No	No	0.94
Poor	Yes	Yes	0.04

MI: Motricity Index leg; cutoff: 35 points;

LCT: Letter Cancellation Test, cutoff: asymmetry 2 points;

EmNSA: Erasmus MC modified Notthingham Sensory Assessment, cutoff 33 points.

OBJECTIVE 3

Use a smartphone app to identify the best practices for each stroke patient depending on the time post-stroke and their severity of impairment

Decision making process

- Why an algorithm?
 - Decision making process
 - Based on clear assessment criteria, chosen because of the prognostic indicators
 - Considered the evidence for interventions in the early rehab phase (up to 12 weeks), then after this when rehab may be provided in a less intense manner

App Development

- Interviewed 5 app developer groups
- Selected Pivot Design Group (<u>www.pivotdesigngroup.com</u>) in Toronto because of their experience in app development in Health
- Worked with them to develop a prototype to show to team members for feedback

App Developers role

- User Experience- interviewed therapists
- Developed prototype designed for smartphones that could be used nearby the patient
- Excellent awareness of how to incorporate considerations like tailoring the evidence using "filters"
- Advised on role of icons and star system
 Toronto Rehabilitation

Prognostic algorithm for the upper paretic limb

Courtesy of G. Kwakkel WEEKLY MONITORING CHANGE OF VOLUNTARY MOTOR CONTROL

Post Stroke Arm Algorithm

During late phase goal Achievement and progress must be reviewed regularly to determine if progress is still being made if not convert to independent program

Can the patient produce any voluntary muscle activity in the affected upper limb?

Yes, or not yet?

Can the patient produce any voluntary muscle activity in the affected upper limb?

Yes, or not yet?

- Determined on initial assessment, in any position

In a seated position, can the patient produce any shoulder abduction against gravity?

Yes, or not yet?

With the forearm prone on a table and the hand and fingers unsupported, can the patient initiate finger (and/or thumb) extension three times within a minute?

Yes, or not yet?

The interventions

- Reviewed the research evidence from a number of sources
 - Strokengine has already reviewed the literature
 - Compiled lists of interventions based on expert opinion from the working party
 - Each working group further reviewed the literature, new searches until March 2015

Figure 3. Summary effect sizes for physical therapy interventions – armhand activities.

Intervention	Compari- sons (n) / Patients (N)	1² (%)	Hedges' g (95%Cl)	Powe
Outcome: arm-hand activities				
Therapeutic positioning arm	NA			
Reflex-inhibiting/immobilization	NA			
Air-splints	3 / 180	0	\Leftrightarrow	0.050
Techniques and devices GHS/HSP	NA			
Bilateral arm training	10/417	40	\diamond	0.061
Original CIMT	1/222	0		0.927
High-intensity mCIMT	16/348	11	\diamond	0.676
Low-intensity mCIMT	16/337	41	\diamond	0.997
Robotics-unilateral shoulder-elbow	10/261	0	\diamond	0.335
Robotics-bilateral elbow-wrist	NA			
Robotics-shoulder-elbow-wrist-hand	NA			
Mental practice with motor imagery	15/246	63	\sim	0.954
Mirror therapy	4/104	82		0.252
Virtual reality training	6/89	0	\Leftrightarrow	0.098
NMS wrist/finger extensors	3/82	79		0.090
NMS wrist/finger flexors/extensors	2/41	13	\sim	0.341
NMS shoulder	NA			
EMG-NMS wrist/finger extensors	14/162	49	\diamond	0.971
EGM-NMS wrist/finger flexors/extensor	\$2/31	22		0.284
TENS	NA			
EMG-BF	5/102	0	\diamond	0.149
Trunk restraint	3/58	ō	$\langle \rangle$	0.056
Interventions somatosensory functions	12/266	ō	\diamond	0.308
Outcome: motor function arm				
Therease dis positioning arm				
Deflex inhibiting formebilization	N/A			
Ais solists	E (20E	00	<	0.056
Techniques and devices CHSNED	57205	00	~	0.162
Pilateral arm training	4/140	20		0.281
Original CIMT	9/2/4	80		0.201
Ush isteach wONT	NA			0.097
High-Intensity InCIMT	4/50	67		0.887
Low-intensity moint i	15/333	39		0.343
Robotics—unilateral shoulder-elbow	1// 32/	0	~	0.841
Robotics-bilateral elbow-wrist	4/62	-0		0.053
Robotics-shoulder-elbow-wrist-hand	2/36	75		0.154
Mental practice with motor imagery	11/149	29	¥~	0.434
Mirror therapy	3/112	52		0.183
Virtual reality training	8/158	0		0.053
NMS whist/higer extensors	2/49	84		0.055
NMS wrist/finger flexors/extensors	2/41	0		0.037
NMS shoulder	2/32	33		0.219
EGM-NMS wrist/finger extensors	3/49	0		0.398
EMG-NMS wrist/finger flexors/extensor	\$2/31	0		0.315
TENS	NA			0.000
EMG-BF	2/69	0	\sim	0.282
Trunk restraint	NA			0.740
Interventions somatosensory functions	4/170	51		0./16
			-1 0 1 2	

Favors control

Favors treatment

Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, et al. (2014) What Is the Evidence for Physical Therapy Poststroke? A Systematic **Review and Meta-Analysis.** PLoS ONE 9(2): e87987. doi: 10.1371/journal.pone. 0087987 http://127.0.0.1:8081/ plosone/article?id=info:doi/ 10.1371/journal.pone. 0087987 • PLOS ONE

0.056 0.308

University of South Australia

VU University Medical Center Amsterdam

Evidence

Level of Evidence Grading System for Recommendations

- **A** At least one randomized controlled trial, meta-analysis, or systematic review
- **B** At least one cohort comparison, case studies or other type of experimental study.
- **C** Expert opinion, experience of a consensus panel
- **NE** No evidence provided.

Generating "Outcomes" for Interventions within each "box"

- **Create Outcomes Working Group chaired by Bob Teasell,** M.D. (EBRSR).
- **Review outcomes associated with every paper for each** intervention for which substantial levels of evidence were deemed high by each group charged with reviewing evidence for interventions within its "box".
- **Prioritize suggested outcomes based upon the context for** how outcomes used in those studies and affirming evidence to support their validity and appropriateness.

Weblink

• Go to: weblink viatherapy.org

Case study 1 - Kevin

- 56 yr old man suffered R middle cerebral artery territory ischaemic stroke on 4/2/15
- UL goals
 - Achieve independence with dressing, showering
 - Use L arm for meal preparation
 - Maintain active and passive ROM L arm

Current function

- Shoulder shrug and some active shoulder flexion
- Movement patterns dominated by compensatory trunk lean and shoulder shrug
- Experiences pain at rest, during night and on external rotation
- No swelling or significant spasticity

Kevin

Case study 2 - Mik

- 82 yr old man suffered R middle cerebral artery territory ischaemic stroke on 16/3/15
- UL goals
 - Eat with cutlery and feed himself
 - Dress himself independently
 - Return to making things in his shed

Current function

- Active shoulder Flexion and Abduction
- Weaker proximally than distally
- Good sensation, no increased muscle tone
- Able to perform some fine motor tasks but slow and poor coordination

Mik again

In a seated position, can the patient produce any shoulder abduction against gravity?

Yes, or not yet?

Mik

Questions

- What are the key treatments
- What are the contraindications
- What is the dose
- What are outcome measures for this intervention

Filters

- Add Filters
- Can be administered in a group

Conclusions

- The prognostication for arm recovery is possible early post stroke using shoulder abduction and finger extension but most evident by 12 weeks
- The viatherapy app provides clinicians with guidance based on stage of recovery and time post stroke

